:: ECONOMY :: ANALYSIS OF TECHNICAL PARAMETERS FOR THE UT62 TUBBING ERECTOR :: ECONOMY :: ANALYSIS OF TECHNICAL PARAMETERS FOR THE UT62 TUBBING ERECTOR
:: ECONOMY :: ANALYSIS OF TECHNICAL PARAMETERS FOR THE UT62 TUBBING ERECTOR
 
UA  RU  EN
         

Світ наукових досліджень. Випуск 37

Термін подання матеріалів

23 січня 2025

До початку конференції залишилось днів 4



  Головна
Нові вимоги до публікацій результатів кандидатських та докторських дисертацій
Редакційна колегія. ГО «Наукова спільнота»
Договір про співробітництво з Wyzsza Szkola Zarzadzania i Administracji w Opolu
Календар конференцій
Архів
  Наукові конференції
 
 Лінки
 Форум
Наукові конференції
Наукова спільнота - інтернет конференції
Світ наукових досліджень www.economy-confer.com.ua

 Голосування 
З яких джерел Ви дізнались про нашу конференцію:

соціальні мережі;
інформування електронною поштою;
пошукові інтернет-системи (Google, Yahoo, Meta, Yandex);
інтернет-каталоги конференцій (science-community.org, konferencii.ru, vsenauki.ru, інші);
наукові підрозділи ВУЗів;
порекомендували знайомі.
з СМС повідомлення на мобільний телефон.


Результати голосувань Докладніше

 Наша кнопка
www.economy-confer.com.ua - Економічні наукові інтернет-конференції

 Лічильники
Українська рейтингова система

ANALYSIS OF TECHNICAL PARAMETERS FOR THE UT62 TUBBING ERECTOR

 
19.10.2022 15:15
Автор: Zabolotnyi Kostiantyn Serhiyovych, Doctor of Technical Sciences, Head of department of Engineering and Design in Machinery Industry, Dnipro University of Technology; Panchenko Olena Volodymyrivna, Candidate of Sciences (tech.), Senior Lecturer Department of Engineering and Design in Machinery Industry, Dnipro University of Technology; Zhupiiev Oleksandr Leonidovych, Senior Instructor of Mining Machines and Engineering Department, Dnipro University of Technology
[26. Технічні науки;]

ORCID: 0000-0001-8431-0169 (Zabolotnyi K.S.)

ORCID: 0000-0002-1664-2871 (Panchenko O.V.)

ORCID: 0000-0003-0531-2217 (Zhupiiev O.L.)

Tubbing erectors – machines designed to reinforce horizontal mine workings with the help of lining (tubbings or reinforced concrete blocks) – are used in tunneling.

The tubbing erector manipulator (Fig. 1) connects the links of Lever arm 2, Shoulder 3 and Section 4 with the hoisting device using rotational kinematic pairs. The hoisting device is designed for assembling in the tunnel of Pin lining 5. Lever arm 2 link with counter-weight 7 is set on the drive shaft of the hydraulic motor 1 (Support). Two power hydraulic cylinders 6 (Engine) control the links 3 (Shoulder) and 4 (Section). 





Fig. 1. UT62 tubbing erector manipulator design


By order of JSC Dneprotyazhmash, the scientific school of employees at the National Technical University Dnipro Polytechnic is engaged in the study of dynamic and static parameters for tubbing erectors [1].


For the dynamic analysis of such mechanisms, as a rule, methods of analytical mechanics are used, which, in the general case, make it possible to obtain forces in the drive along a given trajectory of the executive body movement. But in order to calculate the stress-strain state of the mechanism links, it is necessary to perform a resource-intensive dynamic calculation [2].


The task is complicated by the fact that the mechanism links move according to a complex law of motion. Therefore, the authors in the work [3] restrict themselves to studying simplified dynamic models of the UTK-2 erector mechanism.


The UT62 erector main characteristics: tunnel diameter – 9.5 m; lining type – tubbings, blocks; tubbing or block weight is no more than 920 kg.


Based on the JSC Dneprotyazhmash initial documentation, a solid model has been constructed using the SolidWorks Simulation program (Fig. 2).


From the trial calculation of the lever arm with the default finite element mesh, it can be seen that an unacceptably high gradient occurs at the stress concentration points.  In addition, the maximum aspect ratio in finite elements reaches 75.6, which is not acceptable in terms of the accuracy criterion. Therefore, the following measures are taken: 15 mm maximum size of the element is set; a mesh management tool is applied (1 mm is the element size, 1.1 is the ratio of the element size in one layer relative to the element size in the previous layer) on the edges, near which the maximum equivalent stresses occur. 







Fig. 2. Tubbing erector manipulator computer model 


A simulation case is accepted when the tubbing is placed in the vicinity of a horizontal plane passing through the axis of the tunnel with a diameter of 10.4 m. The tubbing weight (920 kg) and the gripping device weight for this tubbing (630 kg), applied to the axis of the Section link, are considered as the load. 


Based on a simplified computational scheme, taking into account the gravity centers of each link and their masses (Fig. 3), an analytical calculation of the torque is performed.


Мtorq = Qload·l1 + Рgrip·l2 + Рs·l3 + Рsh·l4 + Рlev·l5 – Qcbload·l6.


It is designated in Fig. 3: Qload – tubbing weight load; Рgrip – gripping device weight for tubbing; Рsec – section weight; Рsh – shoulder weight; Рlev – lever arm weight; Qcbload – counter-balance load on the lever arm; l1 – maximum shoulder when assembling tubbing; l2 – shoulder of application of the gripping device gravity center; l3 – shoulder of application of the section gravity center; l4 – shoulder of application of the shoulder gravity center; l5 – shoulder of application of the lever arm gravity center; l6 – shoulder of application of the counter-balance gravity center.







Fig. 3. Tubbing erector manipulator computational scheme


This result is controlled by directly measuring this parameter in the SolidWorks Simulation program, for which a special lever arm on the manipulator shaft is additionally constructed in the computer model (Fig. 2). The calculation in the SolidWorks Simulation program shows the reactive moment value by 10% higher than the value obtained by calculation. 


The stress-strain state analysis (Fig. 4) obtained in the calculation shows: 1) the most loaded places where equivalent stresses are in the places of attaching the beckets to the Lever arm link (1080 MPa) and in the places of attaching the edges of the beckets to the Shoulder link (860 MPa); 2) the Section link is the least loaded – 8 MPa; 3) in the entire structure of the manipulator assembly, the stresses, except for the above-mentioned places, do not exceed 50 MPa. In addition, preliminary calculations show that the mechanism mass can reach 6000 kg. 


Thus, the following conclusions can be drawn. 


The stress-strain state analysis shows that, on the one hand, there are elements in the manipulator whose equivalent stresses are many times higher than the permissible ones. On the other hand, there are parts with low equivalent stresses. Thus, the original design of the tubbing erector manipulator is not of uniform strength. 







Fig. 4. Tubbing erector manipulator stress-strain state 


To ensure the creation of a tubbing erector manipulator design with uniform strength, it is necessary to substantiate the method of computer analysis of the manipulator mechanism stress-strain state in the process of tunneling. In addition, it is necessary to set and solve an optimization problem – to determine the parameters of the tubbing erector manipulator, ensuring the delivery of tubbing to a given position according to the criterion of achieving the minimum mechanism mass and equivalent drive power. 


References:


1. Zabolotny K., Sirchenko A., Zhupiev O.  The development of idea of tunnel unit design with the use of morphological analysis. New Developments in Mining Engineering 2015. Teoretical and Practical Solutions of Mineral Resources Mining. – CRC Press/Balkema, 2015 – P. 205 – 211


2. Zabolotnyi, K., Zhupiiev, O., Panchenko, O. Substantiation of parameters for the tunnel erector with two manipulators. Advanced Engineering Forum – Switzerland: Trans Tech Publications, 2017. – Vols. 25, 43-53. 


3. Zabolotnyi, K., Zhupiiev, O., Panchenko, O. & Tipikin A. Development of the concept of recurrent metamodeling to create projects of promising designs of mining machines. Ukrainian School of Mining Engineering – 2020: Materials E3S Web of Conferences. 23 October 2020. Vols. 201 (01019), 55–70. DOI: 10.1051/e3sconf/202020101019.

Creative Commons Attribution Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License

допомогаЗнайшли помилку? Виділіть помилковий текст мишкою і натисніть Ctrl + Enter


 Інші наукові праці даної секції
ПЕРСПЕКТИВИ ВИКОРИСТАННЯ РІВНОМІЦНОГО ГУМОТРОСОВОГО КАНАТА БОБІННОЇ ПІДНІМАЛЬНОЇ МАШИНИ
27.10.2022 04:00
АНАЛІЗ НАПРЯМКІВ МОДЕРНІЗАЦІЇ ТА ТЕХНІЧНОГО ПЕРЕОСНАЩЕННЯ ТРАНСФОРМАТОРНИХ ПІДСТАНЦІЙ
26.10.2022 18:44
CALCULATION OF MODERNIZED SCREEN DESIGN IN THE SOLIDWORKS
24.10.2022 21:01
ІНФОРМАЦІЙНО ХВИЛЬОВА ТЕРАПІЯ ТА МОЖЛИВОСТІ ЗАСТОСУВАННЯ ЇЇ В МЕДИЦИНІ ТА БІОЛОГІЇ
24.10.2022 20:24
БЕЗПІЛОТНИКИ НАШОГО ЧАСУ
24.10.2022 19:54
ПОНЯТТЯ WEB – ДОДАТКУ
24.10.2022 18:25
INNOVATIVE TEACHING METHODS IN ENGINEERING
21.10.2022 19:25
ВИКОРИСТАННЯ ТЕПЛОТИ ВИТЯЖНОГО ПОВІТРЯ ДЛЯ НАГРІВАННЯ ПРИПЛИВНОГО В СИСТЕМАХ ВЕНТИЛЯЦІЇ
18.10.2022 20:55
TECHNOLOGIES FOR IMPROVING THE TECHNICAL CONDITION OF REGULATING BASINS AND MAIN CHANNELS
13.10.2022 17:33




© 2010-2025 Всі права застережені При використанні матеріалів сайту посилання на www.economy-confer.com.ua обов’язкове!
Час: 0.257 сек. / Mysql: 1630 (0.202 сек.)