:: ECONOMY :: ALGORITHM OF IDENTIFYING ULTRASONIC MAIN WAVE FROM RECEIVED SIGNAL :: ECONOMY :: ALGORITHM OF IDENTIFYING ULTRASONIC MAIN WAVE FROM RECEIVED SIGNAL
:: ECONOMY :: ALGORITHM OF IDENTIFYING ULTRASONIC MAIN WAVE FROM RECEIVED SIGNAL
 
UA  RU  EN
         

Світ наукових досліджень. Випуск 36

Термін подання матеріалів

17 грудня 2024

До початку конференції залишилось днів 0



  Головна
Нові вимоги до публікацій результатів кандидатських та докторських дисертацій
Редакційна колегія. ГО «Наукова спільнота»
Договір про співробітництво з Wyzsza Szkola Zarzadzania i Administracji w Opolu
Календар конференцій
Архів
  Наукові конференції
 
 Лінки
 Форум
Наукові конференції
Наукова спільнота - інтернет конференції
Світ наукових досліджень www.economy-confer.com.ua

 Голосування 
З яких джерел Ви дізнались про нашу конференцію:

соціальні мережі;
інформування електронною поштою;
пошукові інтернет-системи (Google, Yahoo, Meta, Yandex);
інтернет-каталоги конференцій (science-community.org, konferencii.ru, vsenauki.ru, інші);
наукові підрозділи ВУЗів;
порекомендували знайомі.
з СМС повідомлення на мобільний телефон.


Результати голосувань Докладніше

 Наша кнопка
www.economy-confer.com.ua - Економічні наукові інтернет-конференції

 Лічильники
Українська рейтингова система

ALGORITHM OF IDENTIFYING ULTRASONIC MAIN WAVE FROM RECEIVED SIGNAL

 
17.07.2024 21:27
Автор: Liutak Zinoviy, Candidate of Technical Sciences, Docent, Professor of Department of information and measurement technologies, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk
[26. Технічні науки;]


Ultrasonic measurements play a critical role in various industrial and scientific applications due to their ability to provide precise and non-invasive analysis of materials. This technique involves the use of high-frequency sound waves to detect internal features and flaws within a material, making it invaluable for quality control, maintenance, and research purposes. The primary advantage of ultrasonic measurements is their ability to penetrate deeply into materials, providing detailed information about the internal structure without causing any damage. This makes them ideal for inspecting critical components in industries such as aerospace, automotive, and construction, where ensuring structural integrity is paramount. Ultrasonic measurements are highly versatile and can be used on a wide range of materials, including metals, ceramics, plastics, and composites. This flexibility allows for their application across diverse fields, from medical diagnostics to industrial testing. In medical imaging, for instance, ultrasound is widely used for monitoring fetal development and diagnosing various conditions. In industrial settings, ultrasonic testing helps in detecting cracks, voids, and other imperfections in metal structures, ensuring the safety and reliability of critical components. The ability to provide accurate, real-time data makes ultrasonic measurements an essential tool for preventive maintenance and quality assurance.

One of the significant modern trends in ultrasonic non-destructive testing (NDT) of metal structures is the development of advanced phased array ultrasonic testing (PAUT). PAUT utilizes multiple ultrasonic elements and electronic time delays to create detailed images of the internal structure of metals. This technique enhances the detection capabilities and resolution of traditional ultrasonic testing methods, allowing for more accurate identification of flaws and defects. The ability to generate real-time images and adjust the focal point dynamically makes PAUT a powerful tool for inspecting complex geometries and large structures, such as pipelines, bridges, and aircraft components. Another trend is the integration of ultrasonic testing with automated and robotic systems. Automation in ultrasonic NDT improves the consistency and repeatability of inspections while reducing the time and labor required. Robotic systems equipped with ultrasonic sensors can perform inspections in hazardous or difficult-to-reach areas, ensuring safety and efficiency. Additionally, the use of advanced software and machine learning algorithms for data analysis is becoming more prevalent. These technologies enhance the interpretation of ultrasonic signals, enabling more precise defect characterization and predictive maintenance strategies. The trend towards portable and wireless ultrasonic testing devices is also noteworthy. Advances in sensor technology and wireless communication have led to the development of compact, portable ultrasonic testing equipment that can transmit data to remote monitoring systems in real-time. This mobility allows for on-site inspections and immediate analysis, which is particularly beneficial in field conditions where timely decisions are crucial. The combination of these modern trends is driving the evolution of ultrasonic NDT, making it more accurate, efficient, and accessible, thereby ensuring the structural integrity and safety of critical metal components across various industries.

Identifying ultrasonic waves in received signals is a crucial aspect of ultrasonic measurement analysis. One effective method for distinguishing these waves involves analyzing the time of arrivals (TOA) of different wave components. The TOA technique relies on the precise measurement of the time it takes for ultrasonic waves to travel from the source to various detection points. By mapping these arrival times, it is possible to identify and separate different types of waves, such as longitudinal and shear waves, which are critical for accurate material characterization and defect detection. In addition to TOA, the use of wavelets has emerged as a powerful tool for signal analysis in ultrasonic testing. Wavelet transforms allow for the decomposition of ultrasonic signals into different frequency components, which can then be analyzed separately [1]. This decomposition is particularly useful for identifying the main wave in complex, noisy signals, as wavelets can isolate specific frequency bands and time intervals where the wave of interest is most prominent. By applying wavelet-based techniques, it is possible to enhance the signal-to-noise ratio and achieve a clearer identification of the main ultrasonic wave, thereby improving the accuracy and reliability of the measurement results. Our application integrates these advanced signal processing techniques to accurately identify ultrasonic waves in measurement signals. By leveraging the TOA method, we can precisely determine the arrival times of various wave components, which helps in differentiating between useful signals and noise. This approach is essential for applications where the exact timing of wave arrivals is critical, such as in the detection of small defects or the measurement of thin material layers. Furthermore, we utilize wavelet transforms to further analyze the received signals. The application of wavelets allows us to break down complex signals into simpler, more manageable components. This not only aids in identifying the main ultrasonic wave but also enhances the overall signal processing capabilities of our application. The combination of TOA and wavelet techniques ensures that our system can handle a wide range of ultrasonic measurement scenarios, providing accurate and detailed insights into the internal structure and integrity of materials.

References:

1. LYUTAK, Igor. Wavelet analysis of ultrasonic guided waves in pipeline inspection. In: 2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IEEE, 2005. p. 517-523.



Creative Commons Attribution Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License

допомогаЗнайшли помилку? Виділіть помилковий текст мишкою і натисніть Ctrl + Enter


 Інші наукові праці даної секції
ВИКОРИСТАННЯ ПАПРИКИ В ТЕХНОЛОГІЇ ВИРОБНИЦТВА СИРІВ М’ЯКИХ В ЯКОСТІ ВІТАМІНОВМІСНОГО ІНГРЕДІЄНТА
15.07.2024 23:42




© 2010-2024 Всі права застережені При використанні матеріалів сайту посилання на www.economy-confer.com.ua обов’язкове!
Час: 0.200 сек. / Mysql: 1599 (0.155 сек.)