:: ECONOMY :: ДОСЛІДЖЕННЯ ЕФЕКТИВНИХ МАС НОСІЇВ ЗАРЯДУ В In₄Se₃ МЕТОДОМ ФОТОЕЛЕКТРОННОЇ СПЕКТРОСКОПІЇ З КУТОВИМ РОЗДІЛЕННЯМ :: ECONOMY :: ДОСЛІДЖЕННЯ ЕФЕКТИВНИХ МАС НОСІЇВ ЗАРЯДУ В In₄Se₃ МЕТОДОМ ФОТОЕЛЕКТРОННОЇ СПЕКТРОСКОПІЇ З КУТОВИМ РОЗДІЛЕННЯМ
:: ECONOMY :: ДОСЛІДЖЕННЯ ЕФЕКТИВНИХ МАС НОСІЇВ ЗАРЯДУ В In₄Se₃ МЕТОДОМ ФОТОЕЛЕКТРОННОЇ СПЕКТРОСКОПІЇ З КУТОВИМ РОЗДІЛЕННЯМ
 
UA  PL  EN
         

Світ наукових досліджень. Випуск 39

Термін подання матеріалів

25 березня 2025

До початку конференції залишилось днів 19



  Головна
Нові вимоги до публікацій результатів кандидатських та докторських дисертацій
Редакційна колегія. ГО «Наукова спільнота»
Договір про співробітництво з Wyzsza Szkola Zarzadzania i Administracji w Opolu
Календар конференцій
Архів
  Наукові конференції
 
 Лінки
 Форум
Наукові конференції
Наукова спільнота - інтернет конференції
Світ наукових досліджень www.economy-confer.com.ua

 Голосування 
З яких джерел Ви дізнались про нашу конференцію:

соціальні мережі;
інформування електронною поштою;
пошукові інтернет-системи (Google, Yahoo, Meta, Yandex);
інтернет-каталоги конференцій (science-community.org, konferencii.ru, vsenauki.ru, інші);
наукові підрозділи ВУЗів;
порекомендували знайомі.
з СМС повідомлення на мобільний телефон.


Результати голосувань Докладніше

 Наша кнопка
www.economy-confer.com.ua - Економічні наукові інтернет-конференції

 Лічильники
Українська рейтингова система

ДОСЛІДЖЕННЯ ЕФЕКТИВНИХ МАС НОСІЇВ ЗАРЯДУ В In₄Se₃ МЕТОДОМ ФОТОЕЛЕКТРОННОЇ СПЕКТРОСКОПІЇ З КУТОВИМ РОЗДІЛЕННЯМ

 
21.06.2024 01:50
Автор: Макар Тарас Романович, аспірант, факультет електроніки та комп’ютерних технологій, Львівський національний університет ім. Івана Франка; Галій Павло Васильович, доктор фізико-математичних наук, професор, факультет електроніки та комп’ютерних технологій, Львівський національний університет ім. Івана Франка; Ненчук Тарас Миколайович, кандидат фізико-математичних наук, доцент, факультет електроніки та комп’ютерних технологій, Львівський національний університет ім. Івана Франка; Дзюба Володимир Іванович, аспірант, факультет електроніки та комп’ютерних технологій, Львівський національний університет ім. Івана Франка
[25. Фізико-математичні науки;]

1. Вступ

Одним із ключових параметрів, що визначають ефективність напівпровідникових матеріалів, є ефективні маси носіїв заряду, таких як електрони та дірки. Ефективна маса носіїв визначає їхню рухливість у кристалічній гратці, впливаючи на електропровідність, теплопровідність та інші електронні властивості матеріалу.

Ультрафіолетова електронна спектроскопія з кутовим розділенням(УФЕСКР) є одним з методів для вивчення електронної структури твердих тіл. Ця техніка дозволяє безпосередньо вимірювати кінетичну енергію електронів, які емітуються з поверхні матеріалу під дією ультрафіолетового випромінювання. Отримані дані дозволяють будувати зонну структуру матеріалу та визначати енергетичну дисперсію електронів, що є критично важливим для розрахунку ефективних мас носіїв заряду[1].

У цьому дослідженні ми використовували УФЕСКР для визначення ефективних мас носіїв заряду в In₄Se₃. Вимірювання проводились у двох різних напрямках на поверхні сколювання кристала, що дозволяє дослідити анізотропію електронних властивостей матеріалу.

2. Експериментальна частина

УФЕСКР і відповідні спектри з кутовим розділенням, отримано з використанням плоскополяризованого синхротронного випромінювання, диспергованого 3 метровим тороїдним монохроматором (3m TGM). Вимірювання проводили в НВВ камері з використанням півсферичного енергоаналізатора електронів з кутовим розділенням +-0,5-1°. Сумарна роздільна здатність емітованих фотоелектронів за енергіями близька до 80 меВ при низьких енергіях фотонів 15-40 еВ. Експерименти з ФЕСКР проводили при куті падіння фотонів ψ=45° відносно нормалі до поверхні (s+p-поляризований ВУФ) і з кутами збору фотоелектронів відносно нормалі θ, які вказані у кожному випадку записаного спектру. Всі енергії зв’язку відраховані від рівня Фермі кристалу, з’ясувавши роботу виходу ПС (100) In4Se3 відносно чистого золота (позитивний електрод).




Рис.1. Принципи УФЕС/УФЕСКР. а) Енергетична діаграма, яка демонструє емісію фотоелектронів, як з енергетично глибоких остовних (EiLF), так і рівнів ВЗ (заштриховані стани електронів ВЗ) (внизу) та енергетичні спектри електронів, емітованих з ВЗ – N(E)) (вверху); б) Геометрія та основні параметри фотоемісії: hv – енергія фотонів і поляризація випромінювання  p) ̂ та геометрія падіння (Ψ,ŋ ) випромінювання на ПС (100) In4Se3 по відношенню до нормалі n) ̂, проведеної до неї. Емісія електронів з ПС під кутом θ,φ з кінетичною енергією Ек та зі спіном σ ̂. Заштрихована область торця зразка відображає глибину аналізу d(E), що співмірна довжині вільного пробігу λ(E) збуджених у зразку фотоелектронів і товщині шару ШК In4Se3.[2]

Електронні спектри Ek// ПС (100) розраховуються за експериментальними спектрами УФЕСКР вздовж напрямку <001> In-ланцюжків та перпендикулярно до них – <010>, тобто в ПЗБ по Г ̅–Х ̅ або ж вздовж Г ̅–Y ̅ напрямків відповідно: k// за рівнянням (2), а енергія зв’язку Eзв – за рівнянням (1), використовуючи відомі енергії падаючих ВУФ-квантів hv [4], УФЕС-спектри (кінетичні енергії емітованих фотоелектронів Eкіn.) та роботу виходу eφ  електронів (4,3 еВ) ПС (100) In4Se3. Енергія зв’язку Eзв визначається з рівняння (1):




де: Eзв – енергетична відстань від рівня Фермі EF до певного енергетичного рівня поверхневої валентної зони, що фотоіонізується.

Використовуючи рівняння (2), можна одержати електронні спектри Ek// [3] в ПЗБ вздовж Г ̅–Х ̅ та Г ̅–Y ̅ напрямків:




де: k// – горизонтальна складова (в площині (100) ПС) хвильового вектора k фотоелектрона, емітуючого з кристалу; θ – кут емісії (кут збору електронів енергоаналізатором), а Ekin – їх кінетична енергія.

Результати та обговорення

На рис. 2 наведені дисперсії Ek// електронів ВЗ у ПЗБ вздовж Г ̅–Х ̅  та Г ̅–Y ̅ напрямків, одержані з УФЕСКР ПС (100) In4Se3 при 295 K,  hv=25 еВ та hv=23 еВ відповідно з використанням рівнянь (1) та (2). 

Згідно рис.2(a), відстань від центру приведеної ПЗБ (Г ̅) до центру другої ~=1,6+-0,05 Å-1, в той же час, край першої ПЗБ є при 0,81+-0,05 Å-1. Це передбачає параметр x(с) прямої ґратки 3,92+-0,1 Å, що близько до відомої сталої ґратки с=4,08 Å, вказуючи на адекватність експериментальних результатів і проведених за ними розрахунків. З експериментально одержаної дисперсії, визначена в околі точки Г ̅(k=0), ефективна маса електрона становить 1,62me.




Рис. 2.  Дисперсія Ek// електронів ВЗ у ПЗБ вздовж напрямку Г ̅–Х ̅ (а) та Г ̅–Y ̅ (б)

Одержані для напрямку Г ̅–Y ̅ електронні спектри   дають розмір ПЗБ за цим напрямком ~= 0,51+-0,2 Å-1, або характерний параметр y(b) прямої ґратки 12,2+-0,1 Å, що близький до сталої ґратки b=12,31 Å. З експериментально одержаної дисперсії, визначена в околі точки Г ̅(k=0), ефективна маса електрона становить 0,43me.

Якщо ж виходити з порівняння експериментальних ширин дисперсійних смуг Ek// для напрямків Г ̅–Х ̅ та Г ̅–Y ̅, відповідно, вздовж In-ланцюжків та перпенди-кулярно до них (рис. 2) стає зрозумілим, що ефективні маси електронів у напрямку Г ̅–Y ̅  є набагато меншими (при k0), ніж вздовж In-ланцюжків (Г ̅–Х ̅).

Висновки

Показано, що ПС (100) In4Se3, характеризується значною анізотропією електронних спектрів E(k) ВЗ у площині сколу (100), тобто в поверхневій зоні Бріллюена (ПЗБ). Дисперсійні залежності Ek// у ПЗБ вздовж In-ланцюжків, передбачають існування електронів з ефективними масами в ~4 рази більшими, ніж перпендикулярно до них.

Список використаної літератури

1. Hüfner, S. (2003). Photoelectron Spectroscopy: Principles and Applications. Berlin: Springer. ISBN: 978-3-540-43271-0.

2. Damascelli, A., Hussain, Z., & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Reviews of Modern Physics, 2003, vol. 75, no. 2, pp. 473-541. DOI: 10.1103/RevModPhys.75.473.

3. Damascelli, A. Probing the electronic structure of complex systems by ARPES. Physica Scripta, 2004, vol. 2004.T109, pp. 61. DOI: 10.1238/Physica.Topical.109a00061.

4. Makar, T. R., Dziuba, V. I., Nenchuk, T. M., Tuziak, O. Ya., Galiy, P. V. Electronic energy structure of the (100) In₄Se₃ surfaces at different preparation and treatment in ultraviolet photoelectron spectroscopy study. Physics and Chemistry of Solid State, 2024, vol. 25, №1, pp. 114-119.

5. Makar, T. R., Dziuba, V. I., Nenchuk, T. M., Galiy, P. V., et al. The surface segregation of indium on the (100) In₄Se₃ surface in the spectra of scanning tunneling spectroscopy (STS). Світ наукових досліджень, 2023, №17, pp. 257-264.



Creative Commons Attribution Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License

допомогаЗнайшли помилку? Виділіть помилковий текст мишкою і натисніть Ctrl + Enter


 Інші наукові праці даної секції
ЕЛЕКТРОННІ ВЛАСТИВОСТІ ВИСОКОЕНТРОПІЙНИХ МЕТАЛЕВИХ МАТЕРІАЛІВ
14.06.2024 18:16




© 2010-2025 Всі права застережені При використанні матеріалів сайту посилання на www.economy-confer.com.ua обов’язкове!
Час: 0.245 сек. / Mysql: 1659 (0.185 сек.)