Àêòóàëüí³ñòü. Îçåðî Áàëàòîí - íàéá³ëüøå ì³ëêîâîäíå îçåðî Öåíòðàëüíî¿ ªâðîïè. Íà ÿê³ñòü âîäè âïëèâຠíàéá³ëüøà ïðèòîêà - ð³÷êà Çàëà. Íàïðèê³íö³ 20-ãî ñòîë³òòÿ áóëà ïîáóäîâàíà âîäíî-áîëîòíà òåðèòîð³ÿ ï³ä íàçâîþ Âîäîçàõèñíà ñèñòåìà ʳø-Áàëàòîí â íà䳿, ùî âîíà áóäå ä³ÿòè ÿê çîíà ô³ëüòðàö³¿, ùî ïîêðàùèòü ÿê³ñòü âîäè îçåðà Áàëàòîí [1]. ßê³ñòü âîäè îçåðà Áàëàòîí êîíòðîëþºòüñÿ âïðîäîâæ áàãàòüîõ ðîê³â, áî îçåðî, ÿê ñêëàäíà ñèñòåìà ïîòðåáóº êîìïëåêñíî¿ ïðîöåäóðè ìîí³òîðèíãó ³ îö³íêè [2, 3, 4].  ñó÷àñíèõ äîñë³äæåííÿõ îçåðà Áàëàòîí ïåðåâàæàþòü âèì³ðè âì³ñòó çàáðóäíþþ÷èõ ðå÷îâèí ó âîä³, òà âèâ÷åííÿ ì³êðîá³îëîã³÷íî¿ ñêëàäîâî¿ âîäîéìèùà [1, 5].
Ìåòà äîñë³äæåííÿ – ñêðèí³íãîâå âèâ÷åííÿ ô³çèêî-õ³ì³÷íèõ ïîêàçíèê³â ïîâåðõíåâî¿ âîäè îçåðà Áàëàòîí ó ì³ñò³ Øèîôîê (Óãîðùèíà).
Ìàòåð³àëè òà ìåòîäè. Äîñë³äæåííþ ï³äëÿãàëà ïîâåðõíåâà âîäà îçåðà Áàëàòîí, â³ä³áðàíà íà â³äñòàí³ ï’ÿòè ìåòð³â â³ä áåðåãîâî¿ ñìóãè ó ì³ñò³ Øèîôîê â ëèñòîïàä³ 2023 ðîêó. ̳íåðàëüí³ñòü òà åëåêòðîïðîâ³äí³ñòü âîäè âèçíà÷àëè çà äîïîìîãîþ TDS-ìåòðà – TDS&EC meter (hold) (Êèòàé), âîäíåâèé ïîêàçíèê - ïðèëàäîì ðÍ-ìåòð (Êèòàé), ïîñò³éíó òà òèì÷àñîâó æîðñòêîñò³ – ç âèêîðèñòàííÿì òåñò-ñèñòåì GH òà ÊÍ «Tetra Test» (ͳìå÷÷èíà). Êîíöåíòðàö³¿ ³îí³â Ñà2+ òà Mg2+ âèì³ðþâàëè òåñò-ñèñòåìîþ Aquatest Ca Mg «Zoolek» (ͳìå÷÷èíà). Âèçíà÷åííÿ îêèñíî-â³äíîâíîãî ïîòåíö³àëó âîäè (mV) ïðîâîäèëè çà äîïîìîãîþ ïðèëàäó YY-400 (Êèòàé).
Ðåçóëüòàòè. Ïîâåðõíåâà âîäà îçåðà Áàëàòîí ó äðóã³é äåêàä³ ëèñòîïàäà 2023 ðîêó â ìåæàõ ì³ñòà Øèîôîê ìàëà íàñòóïí³ ô³çèêî-õ³ì³÷í³ ïîêàçíèêè. Çàãàëüíà ì³íåðàë³çàö³ÿ âîäè ñêëàäàëà 457 ìã/äì3, åëåêòðîïðîâ³äí³ñòü – 914 μS/ñì, âîäíåâèé ïîêàçíèê 8,11 óìîâíèõ îäèíèöü, îêèñíî-â³äíîâíèé ïîòåíö³àë äîð³âíþâàâ 0 mV. Ïîñò³éíà æîðñòê³ñòü (GH) âîäè Æåíåâñüêîãî îçåðà äîñÿãàëà 30 °d (åêâ³âàëåíòíî 5,349 ììîëü/äì3), òèì÷àñîâà æîðñòê³ñòü (ÊÍ) äîð³âíþâàëà 20 °d (åêâ³âàëåíòíî 3,566 ììîëü/äì3). Çàãàëüíà æîðñòê³ñòü (GH+ ÊÍ) ñêëàëà 50 °d (åêâ³âàëåíòíî 8,915 ììîëü/äì3). Êîíöåíòðàö³ÿ ³îí³â êàëüö³þ ñêëàäàëà 50 ìã/äì3, ìàãí³þ – 75 ìã/äì3.
³äïîâ³äíî äî ñàí³òàðíî-ã³ã³ºí³÷íèõ íîðìàòèâ³â [7], âñòàíîâëåíèé ïîêàçíèê çàãàëüíî¿ ì³íåðàë³çàö³¿ âîäè îçåðà Áàëàòîí (457 ìã/äì3) çíàõîäèòüñÿ â ìåæàõ îïòèìàëüíîãî âì³ñòó ì³íåðàëüíèõ ðå÷îâèí ùîäî âîäè íåöåíòðàë³çîâàíîãî âîäîïîñòà÷àííÿ (íîðìàòèâ 200-500 ìã/äì3, ìàêñèìàëüíî äî 1000 ìã/äì3). Ïîêàçíèê ³îí³â âîäíþ 8,11 ó.î. òàêîæ íå ïåðåâèùóº íîðìàòèâí³ çíà÷åííÿ – 6,5-8,5 ó.î. Çàãàëüíà æîðñòê³ñòü (8,915 ììîëü/äì3) áóëà â 1,27 ðàçè á³ëüøî¿, â³äíîñíî âåðõíüî¿ ìåæ³ íîðìàòèâó (1,5-7 ììîëü/äì3). Êîíöåíòðàö³ÿ ³îí³â êàëüö³þ (50 ìã/äì3) çíàõîäèëàñü â ìåæàõ îïòèìàëüíîãî âì³ñòó (25-75 ìã/äì3, ìàêñèìàëüíî 130 ìã/äì3), àíàëîã³÷íà ñèòóàö³ÿ áóëà â³äíîñíî êîíöåíòðàö³¿ ³îí³â ìàãí³þ (75 ìã/äì3) ïîð³âíÿíî ç íîðìàòèâíèìè ïîêàçíèêàìè (îïòèìàëüíî 10-50 ìã/äì3, ìàêñèìàëüíî 80 ìã/äì3). Åëåêòðîïðîâ³äí³ñòü ³ îêèñíî-â³äíîâíèé ïîòåíö³àë âîäè íåöåíòðàë³çîâàíîãî ïèòíîãî âîäîïîñòà÷àííÿ ã³ã³ºí³÷íèìè ñòàíäàðòàìè íå íîðìóþòüñÿ.
Âèñíîâêè. Ô³çèêî-õ³ì³÷í³ ïîêàçíèêè âîäè îçåðà Áàëàòîí ó äðóã³é äåêàä³ ëèñòîïàäà 2023 ðîêó, â ìåæàõ ì³ñòà Øèîôîê, çà á³ëüø³ñòþ íîðìàòèâ³â â³äïîâ³äຠã³ã³ºí³÷íèì âèìîãàì ùîäî ðåêðåàö³éíèõ âîäîéìèù ³ âîäè íåöåíòðàë³çîâàíîãî ïèòíîãî âîäîïîñòà÷àííÿ. Âèíÿòêîì ñêëàâ ïîêàçíèê çàãàëüíî¿ æîðñòêîñò³ âîäè, ÿêèé áóâ çá³ëüøåíèì â 1,27 ðàçè.
Ñïèñîê ë³òåðàòóðè:
1. Marinović Z., Tokodi N., Backović D.D., Šćekić I., Kitanović N., Simić S.B., Đorđević N.B., Ferincz Á., Staszny Á., Dulić T., Meriluoto J., Urbányi B., Lujić J., Svirčev Z.. Does the Kis-Balaton water protection system (KBWPS) effectively safeguard lake Balaton from toxic Cyanobacterial blooms? Microorganisms. 2021. Vol. 9, ¹ 5. P. 960. doi: 10.3390/microorganisms9050960
https://pubmed.ncbi.nlm.nih.gov/33946953/
2. Ralovich B., Tóth S., Kaurek R., Braun G. Computer analysis of some bacteriological, biological and physiochemical parameters of the coastal water of lake Balaton. Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med. 1986. Vol. 182, ¹ 4, P. 407-420.
https://pubmed.ncbi.nlm.nih.gov/3096022/
3. Babinszky G., Csitári G., Józsa S. Observations on environmental factors in connection with avian botulism outbreaks in a Hungarian wetland habitat. Acta Microbiologica et Immunologica Hungarica. 2008. Vol. 55, ¹4. P. 455-464. doi: 10.1556/AMicr.55.2008.4.10. https://pubmed.ncbi.nlm.nih.gov/19130753/
4. Sebestyén V., Németh J., Juzsakova T., Domokos E., Kovács Z., Rédey Á. Aquatic environmental assessment of lake Balaton in the light of physical-chemical water parameters. Environmental Science and Pollution Research International. 2017. Vol. 24, ¹ 32. P. 25355-25371. doi: 10.1007/s11356-017-0163-3. https://pubmed.ncbi.nlm.nih.gov/28932976/
5. Farkas M., Kaszab E., Radó J., Háhn J., Tóth G., Harkai P., Ferincz Á., Lovász Z., Táncsics A., Vörös L., Kriszt B., Szoboszlay S. Planktonic and benthic bacterial communities of the largest Central European Shallow lake, lake Balaton and its main inflow Zala river. Current Microbiology. 2020. Vol. 77, ¹ 12. P. 4016-4028. doi: 10.1007/s00284-020-02241-7. https://pubmed.ncbi.nlm.nih.gov/33068137/
6. ÄÑÒÓ 7525:2014. Âîäà ïèòíà: âèìîãè òà ìåòîäè êîíòðîëþâàííÿ ÿêîñò³. [×èííèé â³ä 2014-10-23]. Êè¿â, 2014. 30 ñ. (²íôîðìàö³ÿ òà äîêóìåíòàö³ÿ).
|