Àêòóàëüí³ñòü. Æåíåâñüêå îçåðî ðîçòàøîâàíå íà òåðèòîð³ÿõ äâîõ êðà¿í – Ôðàíö³¿ ³ Øâåéöàð³¿, º íàéá³ëüøèì ïð³ñíîâîäíèì îçåðîì Àëüï ³ äðóãèì çà âåëè÷èíîþ îçåðîì Öåíòðàëüíî¿ ªâðîïè. Æåíåâñüêå îçåðî íà 75% æèâèòü ð³÷êà Ðîíà, ÿêà íåñå âîäè çáàãà÷åí³ êàðáîíàòàìè ³ ñóëüôàòàìè êàëüö³þ òà ìàãí³þ, îñòàíí³ 25% æèâëåííÿ éäå çà ðàõóíîê ³íøèõ ïðèòîê³â, ÿê³ º ñí³ãîâîãî ïîõîäæåííÿ. Îçåðî îòðèìóº 8,3 ì³ëüéîí³â òîí âîäè íà ð³ê, â òîìó ÷èñë³ 6,1 ³ç ð³÷êè Ðîíè, 1,1 ³ç ð³÷êè Äðàíñå ³ 1,1 ³ç ³íøèõ ïðèòîê³â [1].  óìîâàõ ãëîáàëüíîãî ïîòåïë³ííÿ, íàñë³äêîì ÷îãî º îáì³ë³ííÿ ð³÷îê ³ ï³äâèùåíå òà¿ííÿ ëüîäîâèê³â, ã³äðîõ³ì³÷íèé ñêëàä âîäè Æåíåâñüêîãî îçåðà çì³íþºòüñÿ. Âîäíî÷àñ Æåíåâñüêå îçåðî âèêîíóº íå ò³ëüêè ðåêðåàö³éíó ôóíêö³þ, àëå òàêîæ º ðåçåðâóàðîì ïèòíî¿ âîäè, õ³ì³÷íèé ñêëàä ÿêî¿ ìຠâåëèêå ã³ã³ºí³÷íå çíà÷åííÿ. Ñó÷àñí³ äîñë³äæåííÿ Æåíåâñüêîãî îçåðà ïåðåâàæíî ñêîíöåíòðîâàí³ íà âèâ÷åíí³ âì³ñòó çàáðóäíþþ÷èõ ðå÷îâèí ó âîä³ ö³º¿ âîäîéìè [2, 3, 4, 5, 6].  äîñòóïí³é íàóêîâ³é ë³òåðàòóð³ îñòàííüîãî äåñÿòèð³÷÷ÿ â³äîìîñò³ ùîäî ã³äðîõ³ì³÷íîãî ñêëàäó âîäè Æåíåâñüêîãî îçåðà â³äñóòí³.
Ìåòà äîñë³äæåííÿ – ñêðèí³íãîâå âèâ÷åííÿ ô³çèêî-õ³ì³÷íèõ ïîêàçíèê³â ïîâåðõíåâî¿ âîäè Æåíåâñüêîãî îçåðà ó ì³ñò³ Ëîçàííà (Øâåéöàð³ÿ).
Ìàòåð³àëè òà ìåòîäè. Äîñë³äæåííþ ï³äëÿãàëà ïîâåðõíåâà âîäà Æåíåâñüêîãî îçåðà, â³ä³áðàíà íà â³äñòàí³ ï’ÿòè ìåòð³â â³ä áåðåãîâî¿ ñìóãè ó ì³ñò³ Ëîçàííà â ëèñòîïàä³ 2023 ðîêó. ̳íåðàëüí³ñòü òà åëåêòðîïðîâ³äí³ñòü âîäè âèçíà÷àëè çà äîïîìîãîþ TDS-ìåòðà – TDS&EC meter (hold) (Êèòàé), âîäíåâèé ïîêàçíèê - ïðèëàäîì ðÍ-ìåòð (Êèòàé), ïîñò³éíó òà òèì÷àñîâó æîðñòêîñò³ – ç âèêîðèñòàííÿì òåñò-ñèñòåì GH òà ÊÍ «Tetra Test» (ͳìå÷÷èíà). Êîíöåíòðàö³¿ ³îí³â Ñà2+ òà Mg2+ âèì³ðþâàëè òåñò-ñèñòåìîþ Aquatest Ca Mg «Zoolek» (ͳìå÷÷èíà). Âèçíà÷åííÿ îêèñíî-â³äíîâíîãî ïîòåíö³àëó âîäè (mV) ïðîâîäèëè çà äîïîìîãîþ ïðèëàäó YY-400 (Êèòàé).
Ðåçóëüòàòè. Ïîâåðõíåâà âîäà Æåíåâñüêîãî îçåðà ó äðóã³é äåêàä³ ëèñòîïàäà 2023 ðîêó â ìåæàõ ì³ñòà Ëîçàííà ìàëà íàñòóïí³ ô³çèêî-õ³ì³÷í³ ïîêàçíèêè. Çàãàëüíà ì³íåðàë³çàö³ÿ âîäè ñêëàäàëà 210 ìã/ë, åëåêòðîïðîâ³äí³ñòü – 420 μS/ñì, âîäíåâèé ïîêàçíèê 7,84 óìîâíèõ îäèíèöü, îêèñíî-â³äíîâíèé ïîòåíö³àë äîð³âíþâàâ 0 mV. Ïîñò³éíà æîðñòê³ñòü (GH) âîäè Æåíåâñüêîãî îçåðà äîñÿãàëà 20 °d (åêâ³âàëåíòíî 3,566 ììîëü/äì3), òèì÷àñîâà æîðñòê³ñòü (ÊÍ) äîð³âíþâàëà 10 °d (åêâ³âàëåíòíî 1,783 ììîëü/äì3). Çàãàëüíà æîðñòê³ñòü (GH+ ÊÍ) ñêëàëà 30 °d (åêâ³âàëåíòíî 5,348 ììîëü/äì3). Êîíöåíòðàö³ÿ ³îí³â êàëüö³þ ñêëàäàëà 35 ìã/ë, ìàãí³þ – 9 ìã/ë.
³äïîâ³äíî äî ñàí³òàðíî-ã³ã³ºí³÷íèõ íîðìàòèâ³â [7], âñòàíîâëåíèé ïîêàçíèê çàãàëüíî¿ ì³íåðàë³çàö³¿ âîäè Æåíåâñüêîãî îçåðà (210 ìã/ë) çíàõîäèòüñÿ â ìåæàõ îïòèìàëüíîãî âì³ñòó ì³íåðàëüíèõ ðå÷îâèí ùîäî âîäè íåöåíòðàë³çîâàíîãî âîäîïîñòà÷àííÿ (íîðìàòèâ 200-500 ìã/ë, ìàêñèìàëüíî äî 1000 ìã/ë). Âîäíåâèé ïîêàçíèê 7,84 ó.î. òàêîæ íå ïåðåâèùóº íîðìàòèâí³ çíà÷åííÿ – 6,5-8,5 ó.î. Çàãàëüíà æîðñòê³ñòü (5,348 ììîëü/äì3) çíàõîäèòüñÿ â îïòèìàëüíîìó ä³àïàçîí³ (1,5-7 ììîëü/äì3). Êîíöåíòðàö³ÿ ³îí³â êàëüö³þ (35 ìã/ë) çíàõîäèëàñü â ìåæàõ îïòèìàëüíîãî âì³ñòó (25-75 ìã/ë, ìàêñèìàëüíî 130 ìã/ë), òîä³ ÿê êîíöåíòðàö³ÿ ³îí³â ìàãí³þ (9 ìã/ë) áóëà äåùî íèæ÷îþ çà îïòèìàëüíó (10-50 ìã/ë, ìàêñèìàëüíî 80 ìã/ë). Åëåêòðîïðîâ³äí³ñòü ³ îêèñíî-â³äíîâíèé ïîòåíö³àë âîäè íåöåíòðàë³çîâàíîãî ïèòíîãî âîäîïîñòà÷àííÿ ã³ã³ºí³÷íèìè ñòàíäàðòàìè íå íîðìóþòüñÿ.
Âèñíîâêè. Ô³çèêî-õ³ì³÷í³ ïîêàçíèêè âîäè Æåíåâñüêîãî îçåðà â³äïîâ³äàþòü ã³ã³ºí³÷íèì âèìîãàì ùîäî ðåêðåàö³éíèõ âîäîéìèù ³ âîäè íåöåíòðàë³çîâàíîãî ïèòíîãî âîäîïîñòà÷àííÿ. Çà ã³ã³ºí³÷íèìè êðèòåð³ÿìè ùîäî ïèòíî¿ âîäè - îïòèìàëüíèé âì³ñò ìàãí³þ ó âîä³ Æåíåâñüêîãî îçåðà º äåùî çíèæåíèì.
Ñïèñîê ë³òåðàòóðè:
1. Æåíåâñüêå îçåðî, Øâåéöàð³ÿ : âåá-ñàéò. URL: https://www.hisour.com/ru/geneva-lake-switzerland-58209/ (äàòà çâåðíåííÿ: 02.12.2023).
2. Multi-column modelling of lake Geneva for climate applications / R. Gaillard et al. Scientific Reports. 2022. Vol.12, ¹. 1. Ð. 353. doi: 10.1038/s41598-021-04061-6.
3. Arsenic in Lake Geneva (Switzerland, France): long term monitoring, and redox and methylation speciation in an As unpolluted, oligo-mesotrophic lake / M. Filella et al. Environmental Science. Process & Impacts. 2023. Vol. 25, ¹. 4. Ð. 850-869. doi: 10.1039/d2em00431c.
4. A hybrid empirical and parametric approach for managing ecosystem complexity: Water quality in Lake Geneva under nonstationary futures / E.R. Deyle et al. Proceedings of National Academy of Sciences of the USA. 2022. Vol. 119, ¹. 26. :e2102466119. doi: 10.1073/pnas.2102466119. Epub 2022 Jun 22.
5. Physico-chemical dataset from an in situ mesocosm experiment simulating extreme climate events in Lake Geneva (MESOLAC) / V. Tran-Khac et al. Data in Brief. 2021. Vol. 36, :107150. doi: 10.1016/j.dib.2021.107150. eCollection 2021 Jun.
6. Mineralization pathways of organic matter deposited in a river-lake transition of the Rhone River Delta, Lake Geneva / M.E. Randlett et al. Environmental Science. Process & Impacts. 2015. Vol. 17, ¹2. Ð. 370-380. doi: 10.1039/c4em00470a.
7. ÄÑÒÓ 7525:2014. Âîäà ïèòíà: âèìîãè òà ìåòîäè êîíòðîëþâàííÿ ÿêîñò³. [×èííèé â³ä 2014-10-23]. Êè¿â, 2014. 30 ñ. (²íôîðìàö³ÿ òà äîêóìåíòàö³ÿ).
|