:: ECONOMY :: ПОБУДОВА МЕТОДІВ КЛАСИФІКАЦІЇ ЗОБРАЖЕНЬ НА ОСНОВІ АРХІТЕКТУРИ НЕЙРОМЕРЕЖ :: ECONOMY :: ПОБУДОВА МЕТОДІВ КЛАСИФІКАЦІЇ ЗОБРАЖЕНЬ НА ОСНОВІ АРХІТЕКТУРИ НЕЙРОМЕРЕЖ
:: ECONOMY :: ПОБУДОВА МЕТОДІВ КЛАСИФІКАЦІЇ ЗОБРАЖЕНЬ НА ОСНОВІ АРХІТЕКТУРИ НЕЙРОМЕРЕЖ
 
UA  RU  EN
         

Світ наукових досліджень. Випуск 36

Термін подання матеріалів

17 грудня 2024

До початку конференції залишилось днів 0



  Головна
Нові вимоги до публікацій результатів кандидатських та докторських дисертацій
Редакційна колегія. ГО «Наукова спільнота»
Договір про співробітництво з Wyzsza Szkola Zarzadzania i Administracji w Opolu
Календар конференцій
Архів
  Наукові конференції
 
 Лінки
 Форум
Наукові конференції
Наукова спільнота - інтернет конференції
Світ наукових досліджень www.economy-confer.com.ua

 Голосування 
З яких джерел Ви дізнались про нашу конференцію:

соціальні мережі;
інформування електронною поштою;
пошукові інтернет-системи (Google, Yahoo, Meta, Yandex);
інтернет-каталоги конференцій (science-community.org, konferencii.ru, vsenauki.ru, інші);
наукові підрозділи ВУЗів;
порекомендували знайомі.
з СМС повідомлення на мобільний телефон.


Результати голосувань Докладніше

 Наша кнопка
www.economy-confer.com.ua - Економічні наукові інтернет-конференції

 Лічильники
Українська рейтингова система

ПОБУДОВА МЕТОДІВ КЛАСИФІКАЦІЇ ЗОБРАЖЕНЬ НА ОСНОВІ АРХІТЕКТУРИ НЕЙРОМЕРЕЖ

 
21.11.2023 20:52
Автор: Решетнікова Світлана Миколаївна, кандидат технічних наук, доцент, Національний технічний університет «Харківський політехнічний інститут» ; Боева Анна Анатольевна, кандидат фізико-математичних наук, доцент, Національний технічний університет «Харківський політехнічний інститут» ; Решетнікова Катерина Сергіївна, прогаміст, IT-компанія CloudWorks
[2. Інформаційні системи і технології;]

На теперішнчй час машинне навчання застосовується у дуже великій кількості областей, наприклад, у медичній діагностиці, дорожньому русі, розпізнаванні жестів та мови, прогнозуванні. 

З методів машинного навчання відокремлюють глибоке навчання. Глибоке навчання - архітектура нейромереж, до якої входить один з підходів до їх побудови та навчання, тобто це сукупність широкого сімейства методів машинного навчання, заснованих на імітації роботи людського мозку в процесі обробки даних і створення патернів, використовуваних для прийняття рішень.

Зазвичай задачі машинного навчання можна віднести до одного з трьох типів: 1) навчання з вчителем (supervised learning); 2) навчання без вчителя (unsupervised learning); 3) навчання з підкріпленням (reinforcement learning).

У навчанні з учителем моделі подається не тільки приклади входів, а й їхні бажані виходи. Метою є пошук функції f : X → Y, де X – простір входів, а Y – простір виходів, яка відповідає парам прикладів. Навчання з учителем вирішує наступні задачі: задача класифікації, регресії та ін.

Найбільш поширеною задачею навчання з вчителем є задача класифікації. Проте потрібно пам’ятати і про мінуси цього підходу: потрібно достатня кількість прикладів, що охоплюють (бажано) усі можливі ситуації, великі часові затрати на виконання процедури навчання та поведінку штучної нейронної мережі (ШНМ).

Одним з методів, що може вирішити проблему з великою тривалістю навчання та невеликою тренувальною вибіркою, є самонавчання (SSL). Зазвичай самонавчання проходить у два етапи: спочатку вирішується підготовча задача, протягом якого використовується не анотовані дані, а потім шари нейронної мережі заморожуються і вирішується основна задача. Підготовча задача (pretext task) – задача зі штучно створеними мітками (псевдо-мітками), на якій навчається модель, щоб вивчити хороше уявлення (репрезентації) об'єктів. Основна задача (downstream task) – задача на якій перевіряють якість отриманих уявлень. Псевдо-мітки (pseudo labels) – мітки, які отримують автоматично, без ручного розмітки, але навчання яким сприяє формуванню хороших уявлень. Головним чином методи самонавчання відрізняються один від одного видом та складністю підготовчої задачі[1]. Наприклад, розфарбовування зображення, доповнювання зображення, задача передбачення контексту.

Була зроблена підготовча задача на визначення кута, на який повернуто зображення. Метою використовувати геометричні перетворення є те, що згорткова нейронна мережа; неефективно працює в рамках поворотів. Тобто для згортки зображення та його повернена версія – це абсолютно різні масиви пікселей. Вважається, що розуміння орієнтації зображення допоможе нейронній мережі краще класифікувати як тренувальний датасет, так і реальні дані[2]. Ми припускаємо, що ШНМ, яка здатна розпізнавати кут повороту зображення, навчиться кращим ембедінг векторам ніж це робить звичайна CNN. Таким чином, мережа буде лише засобом створення векторів ембедінгу, які потім класифікуватимуться будь-яким звичайним методом класифікації, наприклад, методом k-найближчих сусідів чи будь-яким лінійним класифікатором.

В роботі розглянутоо підготовчу задачу складання пазлу. Ідея задачі складання пазлу полягає у припущені, що нейронна мережа буде здатна ототожнювати частини зображення та зображення в цілому і це допоможе їй звертати увагу на значущі елементи зображення. Вхідними даними для вирішення цієї задачі будуть зображення цілком та визначена кількість частин цього зображення[3]. Слід зауважити, що зображення не цілком розділяється на пазли. Спочатку випадково обирається область, яку вже потім розділяють. Ділення на частини теж проходить не рівно по границях, а з деяким відступом. Метою тренування є створити таких репрезентації частин і всього цілого, щоб ці репрезентації були схожі[4].

Література:

1 «Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey», 2019 [Електронний ресурс] : Режим доступу: https://arxiv.org/pdf/1902.06162.pdf

2 «Unsupervised representation learning by predicting image rotations», 2018 [Електронний ресурс] : Режим доступу: https://arxiv.org/pdf/1803.07728v1.pdf

3 «Self-Supervised Learning of Pretext-Invariant Representations», 2019 [Електронний ресурс] : Режим доступу https://arxiv.org/pdf/1912.01991v1.pdf

4 «Unsupervised representation learning by predicting image rotations»,2018 [Електронний ресурс] : Режим доступу:https://arxiv.org/pdf/1803.07728v1.pdf

Creative Commons Attribution Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License

допомогаЗнайшли помилку? Виділіть помилковий текст мишкою і натисніть Ctrl + Enter


 Інші наукові праці даної секції
АКТУАЛЬНІСТЬ, ОСОБЛИВОСТІ ТА МЕТОДИ ЗАХИСТУ ІНФОРМАЦІЇ У ЗАКЛАДАХ ВИЩОЇ ОСВІТИ
21.11.2023 16:35
ШТУЧНИЙ ІНТЕЛЕКТ ЯК ІНСТРУМЕНТ ДЛЯ ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ МОДЕЛЮВАННЯ В AGILE-ПІДХОДАХ
21.11.2023 13:43
НЕЧІТКА СИСТЕМА ПРІОРИТЕТНОСТІ РОБІТ ІТ-ПРОЕКТУ
21.11.2023 11:50
OLAP-ТЕХНОЛОГІЇ: СТРУКТУРА ТА РЕАЛІЗАЦІЯ
21.11.2023 00:11
МАТЕМАТИЧНИЙ ІНСТРУМЕНТАРІЙ ПРИЙНЯТТЯ РІШЕННЯ ПРО ВИБІР БАЗИ ДАНИХ
20.11.2023 19:58
ВИКОРИСТАННЯ ХМАРНИХ ТЕХНОЛОГІЙ
20.11.2023 18:35
ПРОГНОЗУВАННЯ ТЕНДЕНЦІЙ ПРОДАЖІВ У ГАЛУЗІ РОЗДРІБНОЇ ТОРГІВЛІ ЗА ДОПОМОГОЮ АНАЛІЗУ ЧАСОВИХ РЯДІВ І АЛГОРИТМІВ МАШИННОГО НАВЧАННЯ
19.11.2023 21:15
LEVERAGING OF BUSINESS PROCESS MANAGEMENT PERFORMANCE INDICATORS IN SAFE IT PROJECTS
19.11.2023 19:54
ТЕОРЕТИЧНІ АСПЕКТИ ЗАСТОСУВАННЯ СУЧАСНИХ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ НА ПІДПРИЄМСТВІ
18.11.2023 11:06
РЕАЛІЗАЦІЯ ДЕЦЕНТРАЛІЗОВАНИХ ВЕБДОДАТКІВ НА ОСНОВІ ТЕХНОЛОГІЙ БЛОКЧЕЙНУ
17.11.2023 20:16




© 2010-2024 Всі права застережені При використанні матеріалів сайту посилання на www.economy-confer.com.ua обов’язкове!
Час: 0.209 сек. / Mysql: 1599 (0.164 сек.)